



# 检测报告 Test Report

NO: TK22011871

| 项目名称_ | 芜湖埃科泰克动力总成有限公司环境检测 |
|-------|--------------------|
| 检测类别  | 委托检测               |
| 委托单位  | 芜湖埃科泰克动力总成有限公司     |
| 报告日期  | 2022年6月7日          |

#### 安徽泰科检测科技有限公司

Anhui Tech Testing Technology CO., Ltd.

地址: 安徽合肥蜀山经济开发区湖光路 1299 号电商二期 1 栋 1 层西区

传真: 0551-65502582

电话: 0551-65502585

邮编: 230000

#### 声明

- 一、本检测报告涂改、增删无效。
- 二、本检测报告仅对当次检测有效,送检样品仅对来样负责。不对样品来源负责。无法复现的样品,不受理申诉。
- 三、未经本公司同意,不得以任何方式复制本检测报告。经同意复制的复制件,应由本公司加盖公章确认。
- 四、用户对本检测报告若有异议,可在收到本报告后 15 日内,向本公司书面提出,逾期概不受理。
- 五、本检测报告及检测机构名称不得用于广告宣传。

六、我公司对本报告的检测数据保守秘密。

地址:安徽合肥蜀山经济开发区湖光路 1299 号电商二期 1 栋 1 层西区

邮编: 230000

电话: 0551-65502585

传真: 0551-65502582

NO: TK22011871 第 1 页 共 8 页

#### 安徽泰科检测科技有限公司

#### 检 测 报 告

| 受检                                                                                                  | 名称                     | 芜湖埃                 | 芜湖埃科泰克动力总成有限公司 |        |      |        |   |  |
|-----------------------------------------------------------------------------------------------------|------------------------|---------------------|----------------|--------|------|--------|---|--|
| 单位                                                                                                  | 地址                     | 地址                  |                |        |      |        |   |  |
| 联系                                                                                                  | 联系人 郑帼英 联系电话 135055355 |                     |                |        |      | 27     |   |  |
| 样品                                                                                                  | 类别                     | 土壤、地下水、雨水、噪声、废气     | 检测类别           | 委      | 托检测  | J      |   |  |
| 采样                                                                                                  | 日期                     | 2022年5月13日/5月23-24日 | 检测周期           | 2022 年 | 5月13 | 3-27 日 |   |  |
| 采样                                                                                                  | 人员                     | 孙浩、朱铭洋、黄千武、姚德伟。     |                |        |      |        |   |  |
| 地下水: pH 值、镉、铅、铬、镍、铜、锌、土壤: pH 值、镉、铅、铬、镍、铜、锌、汞 检测内容 雨水: 化学需氧量、悬浮物; 有组织废气: 氮氧化物、挥发性有机物、颗料噪声: 工业企业厂界噪声。 |                        |                     |                |        |      |        |   |  |
| 检测                                                                                                  | 方法                     | 详见第 7-8 页。          |                |        |      |        |   |  |
| 检测                                                                                                  | 结果                     | 详见第 2-6 页。          |                |        |      |        |   |  |
|                                                                                                     |                        |                     |                |        |      |        |   |  |
|                                                                                                     |                        |                     |                | 检验检    | :测报告 | 章      |   |  |
|                                                                                                     |                        |                     | 签              | 发日期:   | 年    | 月      | 日 |  |

NO: TK22011871 第 2 页 共 8 页

## 地下水检测结果

单位: mg/L (标注除外)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |               |             | 毕世: mg/L ∪ | ( 1/4 · 1 = 2   /4 · / )   ) |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------|-------------|------------|------------------------------|--|--|
| 采样点位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 采样日期                                                                                | 样品性状          | 检测项目        | 检测结果       | 标准限值                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |               | pH 值(无量纲)   | 7.5        | 6.5-8.5                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |               | 镉           | ND         | 0.005                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |               | 铅           | 0.002      | 0.01                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |               | 铬           | ND         | /                            |  |  |
| 北区地下水                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2022 年 5 月 13 日                                                                     | 无味、清          | 镍           | ND         | 0.02                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |               | 铜           | ND         | 1.00                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     | l.            | 锌           | ND         | 1.00                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |               | 汞 (μg/L)    | ND         | 0.001                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |               | 砷(µg/L)     | ND         | 0.01                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |               |             |            |                              |  |  |
| 以下                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 空 白                                                                                 |               |             |            |                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |               |             |            |                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |               |             |            |                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |               |             |            |                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |               |             |            |                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |               |             |            |                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |               |             |            |                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |               |             |            |                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |               |             |            |                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |               |             |            |                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1、"ND"表示语                                                                           | L<br>核样品检测浓度值 | L<br>氏于检出限: |            |                              |  |  |
| 备注                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1、"ND"表示该样品检测浓度低于检出限;<br>2、标准限值参考《地下水质量标准》(GB/T 14848-2017)表 1 和表 2 中的Ⅲ类<br>标准限值要求。 |               |             |            |                              |  |  |
| миним |                                                                                     |               |             |            |                              |  |  |

NO: TK22011871 第 3 页 共 8 页

## 雨水检测结果

单位: mg/L

| → 上 ・      |        |                                                                                             |            |        |           |          |      |          |
|------------|--------|---------------------------------------------------------------------------------------------|------------|--------|-----------|----------|------|----------|
| 采样点位       | 采样日期   | <br>  样品性状                                                                                  | <br>  检测项目 |        | 1         | <b>纪</b> |      | 标准<br>限值 |
|            |        |                                                                                             |            | 第一次    | 第二次       | 第三次      | 均值   |          |
| YS001 (二厂) | 2022 年 | 无味、微浑                                                                                       | 化学需氧量      | 13     | 12        | 13       | 13   | 100      |
| 13001 ()   | 5月13日  | 儿·外、 1败(平                                                                                   | 悬浮物        | 15     | 16        | 17       | 16   | 70       |
| YS002 (三厂) | 2022 年 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 化学需氧量      | 15     | 15        | 14       | 15   | 100      |
| 15002 (    | 5月13日  | 707K                                                                                        | 悬浮物        | 11     | 13        | 19       | 14   | 70       |
|            |        |                                                                                             |            |        |           |          |      |          |
|            | 以下     | 空 白                                                                                         |            |        |           |          |      |          |
|            |        |                                                                                             |            |        |           |          |      |          |
|            |        |                                                                                             |            | K      |           |          |      |          |
|            |        |                                                                                             |            |        |           |          |      |          |
|            |        |                                                                                             |            |        |           |          |      |          |
|            |        |                                                                                             |            |        |           |          |      |          |
|            |        |                                                                                             |            |        |           |          |      |          |
|            |        |                                                                                             |            |        |           |          |      |          |
|            |        |                                                                                             |            |        |           |          |      |          |
|            |        |                                                                                             |            |        |           |          |      |          |
|            |        |                                                                                             |            |        |           |          |      |          |
|            |        |                                                                                             |            |        |           |          |      |          |
|            |        |                                                                                             |            |        |           |          |      |          |
|            |        |                                                                                             |            |        |           |          |      |          |
|            |        |                                                                                             |            |        |           |          |      |          |
| 备注         | 标准限    | 是值参考《污水                                                                                     | 《综合排放标准    | 》(GB89 | 978-1996) | 表 4 一级   | 标准限值 |          |

NO: TK22011871 第 4 页 共 8 页

#### 土壤检测结果

单位: mg/kg (标注除外)

|               |                                                                  |                |           | 十旦: mg/kg |       |  |  |  |
|---------------|------------------------------------------------------------------|----------------|-----------|-----------|-------|--|--|--|
| 采样点位          | 采样日期                                                             | 样品性状           | 检测项目      | 检测结果      | 标准限值  |  |  |  |
|               |                                                                  |                | pH 值(无量纲) | 7.48      | /     |  |  |  |
|               |                                                                  |                | 镉         | 0.33      | 65    |  |  |  |
|               |                                                                  |                | 铅         | 13        | 800   |  |  |  |
| 三发油库东侧        |                                                                  |                | 铬         | 42        | /     |  |  |  |
| E: 118°22′18″ | 2022 年<br>5 月 13 日                                               | <br>        黄棕 | 镍         | 28        | 900   |  |  |  |
| N: 31°27′56″  |                                                                  |                | 铜         | 22        | 18000 |  |  |  |
|               |                                                                  | 1              | 锌         | 1.23×10³  | /     |  |  |  |
|               |                                                                  |                | 汞         | 0.144     | 38    |  |  |  |
|               |                                                                  |                | 砷         | 6.90      | 60    |  |  |  |
|               |                                                                  | 4              |           |           |       |  |  |  |
| 以下            | 空 白                                                              |                |           |           |       |  |  |  |
|               |                                                                  | N              |           |           |       |  |  |  |
|               |                                                                  |                |           |           |       |  |  |  |
|               |                                                                  |                |           |           |       |  |  |  |
|               |                                                                  |                |           |           |       |  |  |  |
|               |                                                                  |                |           |           |       |  |  |  |
|               |                                                                  |                |           |           |       |  |  |  |
|               |                                                                  |                |           |           |       |  |  |  |
|               |                                                                  |                |           |           |       |  |  |  |
|               |                                                                  |                |           |           |       |  |  |  |
| 备注            | 标准限值参考《土壤环境质量 建设用地土壤污染风险管控标准》(试行)<br>(GB36600-2018)表1中二类筛选值标准限值。 |                |           |           |       |  |  |  |

NO: TK22011871 第 5 页 共 8 页

## 有组织废气检测结果

| 采样点位              | 排气筒高<br>度(m) | 采样日期                      | 检测项目     |                | 检测结果                  |                       |                       | 标准                    | 単位     |                   |
|-------------------|--------------|---------------------------|----------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|--------|-------------------|
| <b>本件</b> 点位      |              | 八十口为                      |          |                | 第一次                   | 第二次                   | 第三次                   | 均值                    | 限值     | 十四.               |
|                   |              |                           | 标=       | <b></b><br>下流量 | 8019                  | 8448                  | 8728                  | 8398                  | /      | m <sup>3</sup> /h |
|                   |              |                           | 挥发性有     | 排放浓度           | 2.07                  | 1.80                  | 1.95                  | 1.94                  | 120    | mg/m <sup>3</sup> |
| 发二厂热试<br>排放口 1    | 15           | 2022年5月24日                | 机物       | 排放速率           | 1.66×10 <sup>-2</sup> | 1.52×10 <sup>-2</sup> | 1.70×10 <sup>-2</sup> | 1.63×10 <sup>-2</sup> | 10     | kg/h              |
|                   |              |                           | 氮氧       | 排放浓度           | 12                    | 17                    | 14                    | 14                    | 240    | mg/m³             |
|                   |              |                           | 化物       | 排放速率           | 9.62×10 <sup>-2</sup> | 0.144                 | 0.122                 | 0.121                 | 0.77   | kg/h              |
|                   |              |                           | 标=       | <b></b><br>下流量 | 8597                  | 8588                  | 8582                  | 8589                  | 1      | m <sup>3</sup> /h |
|                   |              |                           | 挥发性有     | 排放浓度           | 1.12                  | 1.20                  | 1.30                  | 1.21                  | 120    | mg/m <sup>3</sup> |
| 发二厂热试<br>排放口 2    | 15           | 2022年5月24日                | 机物       | 排放速率           | 9.63×10 <sup>-3</sup> | 1.03×10 <sup>-2</sup> | 1.12×10 <sup>-2</sup> | 1.04×10 <sup>-2</sup> | 10     | kg/h              |
|                   |              | 7,3 2                     | 氮氧<br>化物 | 排放浓度           | 11                    | 15                    | 14                    | 13                    | 240    | mg/m <sup>3</sup> |
|                   |              |                           |          | 排放速率           | 9.46×10 <sup>-2</sup> | 0.129                 | 0.120                 | 0.115                 | 0.77   | kg/h              |
|                   | 15           |                           | 标干流量     |                | 6798                  | 7333                  | 7190                  | 7107                  | /      | m <sup>3</sup> /h |
| 三代机车间             |              | 2022 年                    | 1        | 排放浓度           | 1.03                  | 1.03                  | 1.00                  | 1.02                  | /      | mg/m <sup>3</sup> |
| F4J16 曲轴<br>回火炉排放 |              |                           |          | 排放速率           | 7.00×10 <sup>-3</sup> | 7.55×10 <sup>-3</sup> | 7.19×10 <sup>-3</sup> | 7.25×10 <sup>-3</sup> | /      | kg/h              |
| 口                 |              |                           |          | 排放浓度           | <20                   | <20                   | <20                   | <20                   | /      | mg/m <sup>3</sup> |
|                   |              |                           | 秋        | 颗粒物            | 排放速率                  | <0.136                | < 0.147               | <0.144                | <0.142 | /                 |
|                   |              |                           |          | 1              |                       |                       |                       |                       |        |                   |
|                   | 以            | 下 空                       | 白        |                |                       |                       |                       |                       |        |                   |
|                   |              |                           |          |                |                       |                       |                       |                       |        |                   |
|                   |              |                           |          |                |                       |                       |                       |                       |        |                   |
|                   |              |                           |          |                |                       |                       |                       |                       |        |                   |
| 备注                | 2、挥发性        | 值均参考《<br>有机物标准<br>有机物为 24 | 限值由客     |                | ·<br>标准》(GE           | 316297-199            | 96)表 2 中              | 中标准限值                 | 要求;    |                   |

NO: TK22011871 第 6 页 共 8 页

#### 噪声检测结果

| 环境条件      | 2022年5月                                             | 23 日,昼间:晴, | 风速: 1.6m/s, | 夜间:晴,风速    | : 1.9m/s.                 |             |
|-----------|-----------------------------------------------------|------------|-------------|------------|---------------------------|-------------|
|           |                                                     |            | <br>检测结果(L  | eq, dB(A)) | 标准限值                      | i(dB(A))    |
| 检测日期      | 测点编号                                                | 检测点位 -     | 昼间          | 夜间         | 昼间                        | 夜间          |
|           | N1                                                  | 嵩山路侧 N1    | 57          | 46         |                           |             |
| 2022 年    | N2                                                  | 凤鸣湖路侧 N2   | 57          | 48         | 65                        | 55          |
| 5月23日     | N3                                                  | 风鸣湖路侧 N3   | 59          | 48         |                           | 33          |
|           | N4                                                  | 长春路侧 N4    | 59          | 48         |                           |             |
|           |                                                     |            |             |            |                           |             |
|           | 以下的                                                 | 空白         |             |            |                           |             |
|           |                                                     |            |             |            |                           |             |
|           |                                                     |            |             |            |                           |             |
|           |                                                     |            |             |            |                           |             |
|           |                                                     |            | W 1 114     |            |                           |             |
|           |                                                     |            | 嵩山路<br>▲N1  |            |                           | N           |
|           | Asi Asi                                             |            | 三厂          | 大门 【▲↑     |                           | ·           |
| 测点<br>示意图 | <b></b>                                             |            | ニア          | 大门 🛨 ▲℩    | 风<br>  鸣<br> 湖<br> V3   路 |             |
|           | ▲N4                                                 |            |             |            | ı                         |             |
|           |                                                     |            | 长春路         |            | ▲: 噪声检                    | <b>並测点位</b> |
| 备注        | 标准限值参考《工业企业厂界环境噪声排放标准》(GB 12348-2008)表 1 中 3 类限值要求。 |            |             |            |                           |             |

NO: TK22011871 第 7 页 共 8 页

## 检测方法及主要仪器设备

| 杜           | 检测项目    分析方法 |                                                      | 仪器设备及编号                             | 方法<br>检出限  |
|-------------|--------------|------------------------------------------------------|-------------------------------------|------------|
|             | pH 值         | 水质 pH 值的测定 电极法<br>HJ 1147-2020                       | 笔式 PH 检测计<br>PH838<br>ANTKCY0136-3  | /          |
|             | 镉            | 《水和废水监测分析方法》(第四版)                                    |                                     | 0.0001mg/L |
|             | 铅            | 国家环境保护总局(2002)3.4.7.4                                | 原子吸收分光光度计<br>WYS 2200<br>AHTKFX0009 | 0.001mg/L  |
|             | 铬            | 水质 铬的测定 火焰原子吸收分光光<br>度法 HJ 757-2015                  | Januar Accept                       | 0.03mg/L   |
| 地<br>下<br>· | 镍            |                                                      | 电感耦合等离子体发射                          | 0.007mg/L  |
| 水           | 铜            | 水质 32 种元素的测定 电感耦合等离子体发射光谱法 HJ 776-2015               | 光谱仪 iCAP 7200 HS Duo                | 0.04mg/L   |
|             | 锌            | ->/\                                                 | AHTKFX0060                          | 0.009mg/L  |
|             | 汞            | 水质 汞、砷、硒、铋和锑的测定 原                                    | 原子荧光光度计<br>PF32<br>AHTKFX0132       | 0.04μg/L   |
|             | 砷            | 子荧光法 HJ 694-2014                                     | 原子荧光光度计<br>PF31<br>AHTKFX0011       | 0.3µg/L    |
|             | 化学需氧量        | 水质 化学需氧量的测定 重铬酸盐法<br>HJ 828-2017                     | 滴定管                                 | 4mg/L      |
| 雨水          | 悬浮物          | 水质 悬浮物的测定 重量法<br>GB/T 11901-1989                     | 电子天平<br>FA2204N<br>AHTKFX0002       | 4mg/L      |
|             | pH 值         | 土壤 pH 值的测定 电位法<br>HJ 962-2018                        | pH 计<br>PHS-3C<br>AHTKFX0018        | /          |
| 土壤          | 汞            | 土壤质量 总汞、总砷、总铅的测定 原子荧光法第1部分:土壤中总汞的测定 GB 22105.1-2008  | 原子荧光光度计<br>PF32<br>AHTKFX0132       | 0.002mg/kg |
|             | 砷            | 土壤质量 总汞、总砷、总铅的测定 原子荧光法第2部分: 土壤中总砷的测定 GB 22105.2-2008 | 原子荧光光度计<br>PF31<br>AHTKFX0011       | 0.01mg/kg  |
|             | 备注           |                                                      | /                                   |            |

NO: TK22011871 第 8 页 共 8 页

#### 检测方法及主要仪器设备

| 检测项目 |                                                                                                                                                                                                                                                                    | 分析方法                                                  | 仪器设备及编号                                                                          | 方法<br>检出限         |  |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------|-------------------|--|--|--|--|
|      | 镉                                                                                                                                                                                                                                                                  | 土壤质量 铅、镉的测定 石墨炉原子吸收<br>分光光度法 GB/T 17141-1997          | 原子吸收分光光度计<br>WYS 2200<br>AHTKFX0009                                              | 0.01mg/kg         |  |  |  |  |
|      | 铅                                                                                                                                                                                                                                                                  | 土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法<br>HJ 491-2019        | 原子吸收光谱仪<br>AA240<br>AHTKFX0010                                                   | 10mg/kg           |  |  |  |  |
| 土壤   | 铬                                                                                                                                                                                                                                                                  | 土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法<br>HJ 491-2019        | 原子吸收分光光度计<br>WYS 2200<br>AHTKFX0009                                              | 4mg/kg            |  |  |  |  |
| 上块   | 镍                                                                                                                                                                                                                                                                  | 土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法<br>HJ 491-2019        | 原子吸收光谱仪<br>AA240<br>AHTKFX0010                                                   | 3mg/kg            |  |  |  |  |
|      | 铜                                                                                                                                                                                                                                                                  | 土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法<br>HJ 491-2019        | 原子吸收光谱仪<br>AA240<br>AHTKFX0010                                                   | 1mg/kg            |  |  |  |  |
|      | 锌                                                                                                                                                                                                                                                                  | 土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法<br>HJ 491-2019        | 原子吸收光谱仪<br>AA240<br>AHTKFX0010                                                   | 1mg/kg            |  |  |  |  |
| 有组   | 挥发性有<br>机物                                                                                                                                                                                                                                                         | 固定污染源废气 挥发性有机物的测定<br>固相吸附-热脱附/气相色谱-质谱法<br>HJ 734-2014 | 气相色谱-质谱仪<br>A91PLUS-AMD5<br>PLUSAHTKFX0112<br>全自动热解吸仪<br>AutoTPS-V<br>AHTKFX0088 | 见备注               |  |  |  |  |
| 织废气  | 颗粒物                                                                                                                                                                                                                                                                | 固定污染源排气中颗粒物测定与气态污染物采样方法 GB/T 16157-1996 及修改单          | 电子天平<br>FA2004N<br>AHTKFX0100                                                    | /                 |  |  |  |  |
|      | 氮氧化物                                                                                                                                                                                                                                                               | 固定污染源废气 氮氧化物的测定 定电<br>位电解法 HJ 693-2014                | 自动烟尘烟气测试仪<br>XA-80F<br>ANTKCY0148                                                | 3mg/m³(以<br>NO2计) |  |  |  |  |
| 噪声   | 工业企业 工业企业厂界环境噪声排放标准 GB 12348-2008                                                                                                                                                                                                                                  |                                                       | 多功能声级计<br>AWA5688<br>ANTKCY0009                                                  | /                 |  |  |  |  |
| 1    | 丙酮 0.01、异丙醇 0.002、正己烷 0.004、乙酸乙酯 0.006、苯 0.004、六甲基二硅氧烷 0.001、3-戊酮 0.002、正庚烷 0.004、甲苯 0.004、环戊酮 0.004、乳酸乙酯 0.007、乙酸丁酯 0.005、丙二醇单甲醚乙酸酯 0.005、乙苯 0.006、对/间二甲苯 0.009、2-庚酮 0.001、苯乙烯 0.004、邻二甲苯 0.004、苯甲醚 0.003、苯甲醛 0.007、1-癸烯 0.003、2-壬酮 0.003、1-十二烯 0.008,单位均为 mg/m³。 |                                                       |                                                                                  |                   |  |  |  |  |